Framework for emulation and uncertainty quantification of a stochastic building performance simulator
P. Wate,
M. Iglesias,
V. Coors and
D. Robinson
Applied Energy, 2020, vol. 258, issue C
Abstract:
A good framework for the quantification and decomposition of uncertainties in dynamic building performance simulation should: (i) simulate the principle deterministic processes influencing heat flows and the stochastic perturbations to them, (ii) quantify and decompose the total uncertainty into its respective sources, and the interactions between them, and (iii) achieve this in a computationally efficient manner. In this paper we introduce a new framework which, for the first time, does just that. We present the detailed development of this framework for emulating the mean and the variance in the response of a stochastic building performance simulator (EnergyPlus co-simulated with a multi agent stochastic simulator called No-MASS), for heating and cooling load predictions. We demonstrate and evaluate the effectiveness of these emulators, applied to a monozone office building. With a range of 25–50 kWh/m2, the epistemic uncertainty due to envelope parameters dominates over aleatory uncertainty relating to occupants' interactions, which ranges from 6–8 kWh/m2, for heating loads. The converse is observed for cooling loads, which vary by just 3 kWh/m2 for envelope parameters, compared with 8–22 kWh/m2 for their aleatory counterparts. This is due to the larger stimuli provoking occupants' interactions. Sensitivity indices corroborate this result, with wall insulation thickness (0.97) and occupants' behaviours (0.83) having the highest impacts on heating and cooling load predictions respectively. This new emulator framework (including training and subsequent deployment) achieves a factor of c.30 reduction in the total computational budget, whilst overwhelmingly maintaining predictions within a 95% confidence interval, and successfully decomposing prediction uncertainties.
Keywords: Gaussian process emulator; Building performance; Stochasticity; Uncertainty quantification and decomposition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919314461
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:258:y:2020:i:c:s0306261919314461
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113759
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().