EconPapers    
Economics at your fingertips  
 

A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells

Zhefei Pan, Yanding Bi and Liang An

Applied Energy, 2020, vol. 258, issue C

Abstract: In preparing direct liquid fuel cell electrodes, an ionomer is necessary, whose functions are not only to bind the discrete catalyst nanoparticles onto the substrate materials to build the porous catalyst layer, but also to construct the triple phase boundaries to provide continuous pathways for reactant delivery. In this work, a cost-effective and chemically stable poly(vinylidene fluoride-co-hexafluoropropylene) electrode binder is adopted and compared with the conventional Nafion and polytetrafluoroethylene in terms of the electrode morphology and the fuel cell performance. It is found that the fuel cell using the poly(vinylidene fluoride-co-hexafluoropropylene)-based electrode exhibits the best performance in terms of an open-circuit voltage of 1.47 V, a maximum current density of 300 mA cm−2, and a peak power density of 120.0 mW cm−2. Comparing to the fuel cell performances fabricated with the conventional Nafion and polytetrafluoroethylene as electrode binder, the peak power density achieved by using the new type of electrode binder shows an improvement of 13.7% and 58.1%, respectively. Poly(vinylidene fluoride-co-hexafluoropropylene) shows the lowest cost of $0.18 kW−1, while polytetrafluoroethylene and Nafion possess the higher cost of $0.80 kW−1 and $145.59 kW−1, respectively. The impressive improvement is attributed to the fact that the poly(vinylidene fluoride-co-hexafluoropropylene)-based electrode has a higher electrochemical surface area due to its intrinsic porous property, enhancing the anodic reaction kinetics. It is found that the best cell performance is achieved with 1.0 M EG and 5.0 M KOH in the anolyte and 1.0 M H2O2 and 4.0 M H2SO4 in the catholyte at 60 °C.

Keywords: Direct ethylene glycol fuel cells; Electrode binder; Hydrogen peroxide; Operating parameters; Power density (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919317477
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317477

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114060

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317477