EconPapers    
Economics at your fingertips  
 

Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char

Long Cheng, Zhiqiang Wu, Zhiguo Zhang, Changqing Guo, Naoko Ellis, Xiaotao Bi, A. Paul Watkinson and John R. Grace

Applied Energy, 2020, vol. 258, issue C

Abstract: Efficient elimination of tar is a challenge to the development of biomass gasification as a viable clean energy technology. Catalytic reforming is effective in reducing biomass-derived tars. However, commercial metal-based catalysts are expensive and prone to deactivation. Developing economically viable and environmentally benign catalysts from renewable materials is therefore very attractive. This study focuses on the development of an effective tar elimination process utilizing alternative catalysts derived from bauxite residue, a solid waste material from the alumina production. In this work, the catalytic performance of reduced and activated bauxite residue in facilitating naphthalene (a model biomass tar compound) decomposition was studied in a fixed-bed reactor under cracking and reforming environments. Bauxite residue catalyst in reduced form was found to be active for naphthalene reforming, mainly due to its high metallic iron content. However, under wet syngas environments, bauxite residue catalyst was easily deactivated by steam. To address the steam deactivation of bauxite residue catalyst, biochar as a reducing agent, as well as a co-catalyst and adsorptive-support, was proposed to mix with bauxite residue. In this study, biochar from biomass gasification has been successfully employed as a reducing agent to reduce iron oxides in bauxite residue to metallic iron in an inert environment. Results from catalyst activity testing showed that the bauxite residue-biochar mixed catalyst led to highly effective and sustained naphthalene conversion in a reforming environment, since the iron content in bauxite residue was maintained in its reduced form in the presence of biochar.

Keywords: Biomass gasification; Naphthalene decomposition; Bauxite residue; Biochar catalyst; Iron based catalyst (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919317751
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317751

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114088

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317751