EconPapers    
Economics at your fingertips  
 

Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment

Ziye Ling, Wenzhu Lin, Zhengguo Zhang and Xiaoming Fang

Applied Energy, 2020, vol. 259, issue C

Abstract: This paper presents a simple 2D thermal network model for a battery thermal management system with phase change materials (PCMs). An equivalent electric circuit model is developed to solve heat transfer problems that include the processes of battery heat generation and PCM thermal storage. This thermal network model is compact and accurate. The simulation time is saved by 99% compared with a conventional numerical model, whereas the average prediction error of battery temperature is lower than 1 °C. This model is applied for the rapid optimization of the PCM properties to warm up a battery pack rapidly during cold starts. The results demonstrate that the PCM suitable for thermal management under low temperatures should have a melting point of approximately 40 °C, high thermal conductivity of over 5.4 W/m K, and a low latent heat storage density of less than 0.0145 kJ/m3. Utilizing its high computation efficiency and resolution for capturing the temperature distribution in 2D, the model can quantitatively assess the long-term effect of the thermal management system on the life of a battery module during a 10,000-hour charge–discharge cycle. A lifespan model that integrates a battery capacity fade model into the thermal network is developed and the simulation results verify that a lower temperature and temperature difference reduce the capacity loss in a multi-cell module. The thermal network model is efficient to design and optimize the thermal management system for a real-size battery pack, based on the assessment of its long-term impacts on battery performance.

Keywords: Battery thermal management; Phase change materials; Thermal network model; Cycle life; PCM optimization; Low temperature (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919318070
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318070

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114120

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318070