A combined forecasting model for time series: Application to short-term wind speed forecasting
Zhenkun Liu,
Ping Jiang,
Lifang Zhang and
Xinsong Niu
Applied Energy, 2020, vol. 259, issue C
Abstract:
Wind speed forecasting has been growing in popularity, owing to the increased demand for wind power electricity generation and developments in wind energy competitiveness. Many forecasting methods have been broadly employed to forecast short-term wind speed for wind that is irregular, nonlinear, and non-stationary. However, they neglect the effectiveness of data preprocessing and model parameter optimization, thereby posing an enormous challenge for the precise and stable forecasting of wind speed and the safe operation of the wind power industry. To overcome these challenges and further enhance wind speed forecasting performance and stability, a forecasting system is developed based on a data pretreatment strategy, a modified multi-objective optimization algorithm, and several forecasting models. More specifically, a data pretreatment strategy is executed to determine the dominating trend of a wind speed series, and to control the interference of noise. The multi-objective optimization algorithm can help acquire more satisfactory forecasting precision and stability. The multiple forecasting models are integrated to construct a combined model for wind speed forecasting. To verify the properties of the developed forecasting system, wind speed data of 10 min from 4 adjacent wind farms in Shandong Peninsula, China are adopted as case studies. The results of the point forecasting and interval forecasting reveal that our forecasting system positively exceeds all contrastive models in respect to forecasting precision and stability. Thus, our developed system is extremely useful for enhancing prediction precision, and is a reasonable and valid tool for intelligent grid programming.
Keywords: Short-term forecasting; Combined model; Forecasting accuracy; Wind speed forecasting (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (72)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919318240
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318240
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114137
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().