EconPapers    
Economics at your fingertips  
 

Effects of various occurrence modes of inorganic components on the emissions of PM10 during torrefied biomass combustion under air and oxy-fuel conditions

Wenyu Wang, Chang Wen, Tianyu Liu, Changkang Li, Lichun Chen, Jianqun Wu, Yuhao Shao and Enze Liu

Applied Energy, 2020, vol. 259, issue C

Abstract: In order to control PM10 (of an aerodynamic diameter of 10 μm or less) emissions from biochar combustion, the effects of various occurrence modes of inorganic components on PM10 formation are investigated. Two typical biochars (torrefied willow and wheat) were processed through sequential extraction procedures followed by combustion experiments in a high-temperature drop-tube furnace at 1400 °C. The generated particulate matter was characterised. The PM1 emissions during air combustion were linearly related to the content of K/Cl/S in water-soluble/ion-exchangeable forms, which are easily vaporised. The nucleation and coagulation of KCl/K2SO4 in gaseous species forming most of the PM1 resulted in the above-mentioned strong correlation. The PM1-10 emissions had a not very good linear relationship with the various forms of inorganic elements, and they were mainly related to the acid-soluble components. The catalysed sintering of CaO and coalescence/fragmentation of Ca-containing minerals formed most of the PM1-10 (torrefied willow). The Ca in torrefied willow mainly exists in an acid-soluble form, which interfered with the effect of other elements. The coalescence/fragmentation of Si-containing minerals in torrefied wheat generated most of the PM1-10. After various washing procedures, the different forms of Ca/K were removed and the silicate decreased during combustion, leading to a weakness in coalescence. This led to the above-mentioned relationship. When the combustion atmosphere was switched to oxy-fuel mode, the great contribution of acid-soluble Ca to PM1-10 (torrefied willow)/water-soluble K to PM1 (torrefied wheat) still exists, indicating that they were less affected by the combustion conditions.

Keywords: Sequential extraction; Occurrence mode; Torrefaction; Oxy-fuel; PM10 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919318409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318409

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114153

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318409