A hybrid deep learning model for short-term PV power forecasting
Pengtao Li,
Kaile Zhou,
Xinhui Lu and
Shanlin Yang
Applied Energy, 2020, vol. 259, issue C
Abstract:
The integration of PV power brings great economic and environmental benefits. However, the high penetration of PV power may challenge the planning and operation of the existing power system owing to the intermittence and randomicity of PV power generation. Achieving accurate forecasting for PV power generation is important for providing high quality electric energy for end-consumers and for enhancing the reliability of power system operation. Motivated by recent advancements in deep learning methods and their satisfactory performance in the energy sector, a hybrid deep learning model combining wavelet packet decomposition (WPD) and long short-term memory (LSTM) networks is proposed in this study. The hybrid deep learning model is utilized for one-hour-ahead PV power forecasting with five-minute intervals. WPD is first used to decompose the original PV power series into sub-series. Next, four independent LSTM networks are developed for these sub-series. Finally, the results predicted by each LSTM network are reconstructed and a linear weighting method is employed to obtain the final forecasting results. The performance of the proposed method is demonstrated with a case study using an actual dataset collected from Alice Springs, Australia. Comparisons with individual LSTM, recurrent neural network (RNN), gated recurrent (GRU), and multi-layer perceptron (MLP) models are also presented. The values of three performance evaluation indicators, MBE, MAPE, and RMSE, show that the proposed hybrid deep learning model exhibits superior performance in both forecasting accuracy and stability.
Keywords: PV power forecasting; Deep learning; Wavelet packet decomposition; Long short-term memory (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (77)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919319038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s0306261919319038
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114216
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().