A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles
Chuang Wen,
Brice Rogie,
Martin Ryhl Kærn and
Erasmus Rothuizen
Applied Energy, 2020, vol. 260, issue C, No S0306261919316459
Abstract:
This present study evaluates the potential of entraining the low-pressure hydrogen to fuel cell vehicles during fuelling processes, which is expected to promote the development of the hydrogen fuel automotive industry. A computational fluid dynamics model is developed to evaluate the potential of the proposed hydrogen fuelling process. A flow behaviour analysis is performed to show the detailed flow structure in the critical and sub-critical processes for the hydrogen ejector. The critical suction pressure and critical back pressure are assessed under various inlet pressures of the primary nozzle. The results show that the high-pressure hydrogen accelerates in the primary nozzle, leading to the decrease of the static pressure, which generates the suction effect in the downstream of the nozzle exit to entrain the hydrogen from the low-pressure tank. The entrainment ratio declines along with the increasing back pressure or decreasing inlet pressure of the suction chamber. This study suggests that the integration of an ejector instead of a reduction valve into the hydrogen fuelling station improves the energy efficiency by utilizing less hydrogen from the high-pressurized hydrogen storage during vehicle fuelling.
Keywords: Hydrogen; Fuelling process; Ejector; Entrainment ratio; Fuel cell vehicle (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316459
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:260:y:2020:i:c:s0306261919316459
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113958
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().