Optical and thermal performance analysis of a micro parabolic trough collector for building integration
Moucun Yang,
M.A. Moghimi,
Yuezhao Zhu,
Runpeng Qiao,
Yinfeng Wang and
Robert A. Taylor
Applied Energy, 2020, vol. 260, issue C, No S030626191931921X
Abstract:
Medium temperature thermal energy (100–400 °C) is widely used in industrial processes and in large buildings. The presented work investigated the feasibility of a new solar collector which was designed to harvest solar energy from factory rooftops for industrial process heat applications. The proposed solar collector was comprised of parallel micro-parabolic troughs, vacuum tube receivers, and an internal tracking mechanical contained in a glazed box which can be easily mounted on large buildings. The system does not require external rotational tracking and achieves a concentration ratio of ~4.2 in a ~150 mm height, so it can be easily integrated with buildings. The optical performance of the presented collector is analysed and modelled theoretically and numerically, considering the effect of shading, inclination, and orientation. Furthermore, a transient thermodynamic model is developed to calculate its thermal efficiency and stagnation temperature, along with the effect of vacuum pressure, beam radiation, and emissivity of selective coatings. The theoretical analysis, verified by TRNSYS simulations and an outdoor experiment, revealed that the annual optical efficiency of the system was about 66.7% and the thermal efficiency was about 59.3% at 200 °C, if the collector was inclined to local latitude angle. These results reveal that the proposed design is competitive with evacuated flat plates (i.e., the TVP collector which has a thermal efficiency of ~36% at a normalized temperature difference of 0.2). Further, if the collector were to be installed on the vertical façade of a building, the theoretical model estimated that the optical and thermal efficiencies would be 44.1% and 37.5%, respectively. An economic analysis indicated that a levelized cost of heat energy of 0.51 $/kWh can be obtained. Overall, since the proposed collector has a simple structure and a low-profile, this study indicates it is promising for medium temperature solar thermal heat production for industrial processes and/or for multi-effect absorption chillers.
Keywords: Solar energy; Micro parabolic trough collector (MPTC); Medium temperature; TRNSYS modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191931921X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:260:y:2020:i:c:s030626191931921x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114234
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().