EconPapers    
Economics at your fingertips  
 

Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks

Ruixin Yang, Rui Xiong, Suxiao Ma and Xinfan Lin

Applied Energy, 2020, vol. 260, issue C, No S0306261919319403

Abstract: To investigate the characteristics of lithium-ion battery packs under the condition that one cell is short-circuited when the whole battery pack is being discharged or charged, systematic battery external short circuit (ESC) experiments are conducted. Since not all battery cells are equipped with current sensors because of the space limitation and manufacturing cost, an artificial neural network (ANN)-based method is proposed to estimate the current of the short-circuited cell using only the voltage information, which is the feasible practice in electric vehicle application. Furthermore, the estimated current is used to predict maximum temperature increase as well as internal and surface temperature distribution of the ESC cell based on a 3D electro-thermal coupling model. Two experimental groups under constant current charging condition and constant power discharging condition are employed to validate the stability and accuracy of the proposed method. The results indicate that the root-mean-square-error between the estimated and measured current are 3.72 A and 6.61 A under the two validation experiments respectively, and the maximum estimation errors of temperature increase are 4.9 °C and 7.3 °C respectively.

Keywords: Lithium-ion battery; External short circuit; Current prediction; Temperature prediction; Artificial neural networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919319403
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319403

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114253

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319403