Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale
F. Vega,
F.M. Baena-Moreno,
Luz M. Gallego Fernández,
E. Portillo,
B. Navarrete and
Zhien Zhang
Applied Energy, 2020, vol. 260, issue C, No S0306261919320008
Abstract:
This work provides a wide overview of the state-of-art of the CO2 chemical absorption applied to Carbon Capture and Storage (CCS) technology. The objective is not only to provide the current status of the technology and the research and development activities carried out towards its deployment in the CCS field, but also to identify the future directions and knowledge gaps. A summary of the conventional solvents used for acid gas removal and novel solvent formulations specifically adapted to new challenges such as fossil-fuels power plants and industrial processes was reported. Novel configurations from the conventional CO2 absorption-desorption layout were summarized and their impact on the operational performance and the reboiler duty was further evaluated. Novel opportunities offered by CO2 concentrated flue gas derived from partial oxy-combustion were further discussed in the final section. A large review of the published data from pilot plants has been done to facilitate the final comparison between the current status of post-combustion and novel partial oxy-combustion configurations. Demonstration plants currently available and the commercial solutions proposed by the most important companies were briefly described. CCS pilot plants via chemical absorption have been executed in last decades reaching several CO2 capture capacities up to 80 t CO2/day. Commercial scale plants have been recently developed, being US and China the countries which lead the investment funds. The most important commercial scale demo plants, namely Boundary Dam and Petra Nova, were also described. Nevertheless, there were still many countries which need to bet for CCS at large scale.
Keywords: Absorption; Carbon capture and storage; CO2 capture; Post-combustion; Partial oxy-combustion (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919320008
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:260:y:2020:i:c:s0306261919320008
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114313
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().