Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system
Luca Mastropasqua,
Ilaria Pecenati,
Andrea Giostri and
Stefano Campanari
Applied Energy, 2020, vol. 261, issue C, No S0306261919320793
Abstract:
The roadmap for the hydrogen uptake passes through the development of near-zero emission and/or renewable technologies for hydrogen production. This is the rationale for the investigation of renewable power-to-fuel, namely the coupling between high temperature electrolysis and concentrating solar power. The proposed plant is conceived to supply hydrogen for a small refuelling station. It is based on solid oxide electrolyser cell technology, which performs water electrochemical reduction, in order to produce a target of 150 kgd−1 of hydrogen. The plant is integrated with a parabolic dish solar field designed to provide both electricity and thermal energy, necessary for the electrolysis reaction to take place. Specifically, a modular multi-dish configuration is selected, in which electric power is produced by 30kWel solarized micro-gas turbines placed in the dishes’ focus. In addition to considering a pure renewable power input, a hybridization with natural gas is considered to face the variability of solar resource. Once a yearly H2 yield is estimated, a preliminary economic analysis is carried out and the levelised cost of hydrogen is subsequently obtained. It is found that the system can be operated at a nominal solar-to-hydrogen efficiency above 30%, with a solid oxide electrolysis cell efficiency around 80%. In hybrid conditions, 10 parabolic dishes (9 generating electricity through the micro-gas turbines, 1 supplying heat to the solid oxide electrolysis cell) are needed to produce the target 150 kgd−1 of hydrogen. In conclusion, the competitiveness of the plant is evaluated in comparison with other solar fuels technologies.
Keywords: Solid oxide electrolysis cell; Concentrated solar power; Solar hydrogen; Parabolic dish; Micro gas turbine; System analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919320793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320793
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114392
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().