EconPapers    
Economics at your fingertips  
 

Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays

Zeyu Wang, Yanhua Diao, Yaohua Zhao, Chuanqi Chen, Lin Liang and Tengyue Wang

Applied Energy, 2020, vol. 261, issue C, No S0306261919321543

Abstract: To alleviate the problem of global warming and the energy crisis, this study proposed an integrated collector storage solar air heater that uses evacuated tubes as solar absorbers and paraffin as thermal storage material. In the proposed unit, lap joint-type flat micro-heat pipe arrays serve as heat conductors that transmit the solar energy absorbed by the evacuated tubes to the thermal storage tank or transfer the heat stored in the tank to the air flow channel. Outdoor experiments were carried out to obtain the thermal performance of the proposed device during charging and discharging. The effects of weather conditions, supply air flow rates, and inlet temperature on the thermal response of the integrated collector storage solar air heater were reported. The thermal storage efficiency during the experiment period ranged from 56.1% to 67.5% when the mean outdoor temperature ranged from −5.7 °C to 36.2 °C. The mean thermal extraction power and thermal released efficiency reached 1268.8 W and 98.5%, respectively. The results of the energy conversion process analysis and mathematical fitting showed that the mean charging efficiency was linear with the normalized temperature difference. The mean outlet temperature and mean extraction power were linear with the inlet temperature and exponential with the air flow rate. A conceptual design of an air heating system using the integrated collector storage solar air heater for a 9.9 m2 building was presented. The benefit pre-evaluation revealed that the system can reduce carbon emissions by approximately 5.8 tons over its life cycle.

Keywords: Solar energy; Lap joint-type heat pipe; Flat micro-heat pipe array; Latent heat storage; Integrated collector storage; Solar air heater (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919321543
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:261:y:2020:i:c:s0306261919321543

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114466

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919321543