Investigation on the optical and energy performances of different kinds of monolithic aerogel glazing systems
Yang Liu,
Lin Lu,
Youming Chen and
Bin Lu
Applied Energy, 2020, vol. 261, issue C, No S0306261919321750
Abstract:
Aerogel glazing system is an advanced energy-efficient glazing system designed to reduce the building energy consumption. However, there is no study focused on the energy performances of aerogel glazing systems filled with different aerogels. To analyse the energy performance, the solar extinction coefficient is an indispensable parameter, which is unknown yet. In this research, the solar extinction coefficient is calculated by Mie scattering and Monte Carlo method. The spectral distribution of solar irradiance is taken into account. The influences of porosity and nano-particle’s size are discussed. Then, the solar heat gain coefficients of different aerogel glazing systems versus incidence angle are calculated. Finally, a dynamic heat transfer model is used to simulate the energy performances of different aerogel glazing systems. A case study is carried out for Hong Kong. The results indicated that the porosity of monolithic aerogel has greater influence than the diameter, and the reciprocal effect between the porosity and the diameter is negligible. It is also figured that aerogel with small nano-particle and low porosity will lead to a better energy conservation performance in cooling dominated region.
Keywords: Mie scattering; Solar extinction coefficient; Solar radiation; Energy performance; Aerogel glazing system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919321750
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:261:y:2020:i:c:s0306261919321750
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114487
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().