EconPapers    
Economics at your fingertips  
 

Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty

Alina Walch, Roberto Castello, Nahid Mohajeri and Jean-Louis Scartezzini

Applied Energy, 2020, vol. 262, issue C, No S0306261919320914

Abstract: The large-scale deployment of photovoltaics (PV) on building rooftops can play a significant role in the transition to a low-carbon energy system. To date, the lack of high-resolution building and environmental data and the large uncertainties related to existing processing methods impede the accurate estimation of large-scale rooftop PV potentials. To address this gap, we developed a methodology that combines Machine Learning algorithms, Geographic Information Systems and physical models to estimate the technical PV potential for individual roof surfaces at hourly temporal resolution. We further estimate the uncertainties related to each step of the potential assessment and combine them to quantify the uncertainty on the final PV potential. The methodology is applied to 9.6 million rooftops in Switzerland and can be transferred to any large region or country with sufficient available data. Our results suggest that 55% of the total Swiss roof surface is available for the installation of PV panels, yielding an annual technical rooftop PV potential of 24±9TWh. This could meet more than 40% of Switzerland’s current annual electricity demand. The presented method for an hourly rooftop PV potential and uncertainty estimation can be applied to the large-scale assessment of future energy systems with decentralised electricity grids. The results can be used to propose effective policies for the integration of rooftop photovoltaics in the built environment.

Keywords: Rooftop photovoltaic potential; Spatio-temporal modelling; Big data mining; Uncertainty estimation; Machine Learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919320914
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s0306261919320914

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114404

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261919320914