EconPapers    
Economics at your fingertips  
 

Impact of climatic, technical and economic uncertainties on the optimal design of a coupled fossil-free electricity, heating and cooling system in Europe

K. Zhu, M. Victoria, G.B. Andresen and M. Greiner

Applied Energy, 2020, vol. 262, issue C, No S030626192030012X

Abstract: To limit the global temperature increase to 1.5 °C, fossil-free energy systems will be required eventually. To understand how such systems can be designed, the current state-of-the-art is to apply techno-economical optimisation modelling with high spatial and temporal resolution. This approach relies on a number of climatic, technical and economic predictions that reach multiple decades into the future. In this paper, we investigate how the design of a fossil-free energy system for Europe is affected by changes in these assumptions. In particular, the synergy among renewable generators, power-to-heat converters, storage units, synthetic gas and transmission manage to deliver an affordable net-zero emissions system. We find that levelised cost of energy decreases due to heat savings, but not for global temperature increases. In both cases, heat pumps become less favourable as surplus electricity is more abundant for heating. Demand-side management through buildings’ thermal inertia could shape the heating demand, yet has modest impact on the system configuration. Cost reductions of heat pumps impact resistive heaters substantially, but not the opposite. Cheaper power-to-gas could lower the need for thermal energy storage.

Keywords: Energy system design; Sector coupling; Climate change; Heat saving; Demand-side management; Cost assumptions (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192030012X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s030626192030012x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114500

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:262:y:2020:i:c:s030626192030012x