A novel improved model for building energy consumption prediction based on model integration
Ran Wang,
Shilei Lu and
Wei Feng
Applied Energy, 2020, vol. 262, issue C, No S0306261920300738
Abstract:
Building energy consumption prediction plays an irreplaceable role in energy planning, management, and conservation. Constantly improving the performance of prediction models is the key to ensuring the efficient operation of energy systems. Moreover, accuracy is no longer the only factor in revealing model performance, it is more important to evaluate the model from multiple perspectives, considering the characteristics of engineering applications. Based on the idea of model integration, this paper proposes a novel improved integration model (stacking model) that can be used to forecast building energy consumption. The stacking model combines advantages of various base prediction algorithms and forms them into “meta-features” to ensure that the final model can observe datasets from different spatial and structural angles. Two cases are used to demonstrate practical engineering applications of the stacking model. A comparative analysis is performed to evaluate the prediction performance of the stacking model in contrast with existing well-known prediction models including Random Forest, Gradient Boosted Decision Tree, Extreme Gradient Boosting, Support Vector Machine, and K-Nearest Neighbor. The results indicate that the stacking method achieves better performance than other models, regarding accuracy (improvement of 9.5%–31.6% for Case A and 16.2%–49.4% for Case B), generalization (improvement of 6.7%–29.5% for Case A and 7.1%-34.6% for Case B), and robustness (improvement of 1.5%–34.1% for Case A and 1.8%–19.3% for Case B). The proposed model enriches the diversity of algorithm libraries of empirical models.
Keywords: Building energy prediction; Model integration; Data mining; Robustness (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (41)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920300738
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300738
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114561
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().