Convolutional neural network-based power system transient stability assessment and instability mode prediction
Zhongtuo Shi,
Wei Yao,
Lingkang Zeng,
Jianfeng Wen,
Jiakun Fang,
Xiaomeng Ai and
Jinyu Wen
Applied Energy, 2020, vol. 263, issue C, No S0306261920300982
Abstract:
Online transient stability assessment (TSA) is vital for power system control as it provides the basis for operators to decide emergency control actions. But none of previous TSA research has taken into consideration the difference between two instability modes (aperiodic instability and oscillatory instability), which may threaten secure operation of power system. To address this problem, a TSA and instability mode prediction method based on convolutional neural network is proposed. The method takes the bus voltage phasor sampled by phasor measurement units (PMUs) during a short observation window after disturbance as input, and outputs the prediction result promptly: stable, aperiodic unstable or oscillatory unstable. The end-to-end model automatically extracts needed features from the raw measurement data, thus freeing itself from reliance on expertise. At the offline training stage, stochastic gradient descent with warm restart (SGDR) optimization algorithm is employed so that the model tends to converge to 'flat' and 'wide' minima with better generalization ability. Case studies conducted on New England 39-bus system and Western Electricity Coordinating Council (WECC) 179-bus system demonstrate superior accuracy, adaptability and scalability of the proposed method compared with conventional machine learning methods. Furthermore, the proposed model is empirically proven to be robust to PMU noise and loss.
Keywords: Transient stability assessment; Synchronizing torque; Damping torque; Convolutional neural network; Phasor measurement unit (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920300982
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:263:y:2020:i:c:s0306261920300982
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114586
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().