EconPapers    
Economics at your fingertips  
 

An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings

Hang Yu, Songyan Niu, Yumeng Zhang and Linni Jian

Applied Energy, 2020, vol. 263, issue C, No S0306261920301227

Abstract: With the ever-increasing of population and economy worldwide, buildings have become major energy consumers and greenhouse gas (GHG) emitters. The hybrid AC/DC microgrid is a promising alternative for existing power distribution systems to achieve the goal of nearly/net zero energy buildings (nZEBs). However, the increasing demand for compact structure, seamless integration of distributed generators (DGs) and loads, as well as more control flexibility of hybrid microgrids cannot be adequately satisfied by conventional grid architectures. In view of this, an integrated and reconfigurable hybrid AC/DC microgrid architecture with its hierarchical control strategy is proposed in this paper. Firstly, a novel interlinking converter named smart interlinking unit (SIU) is presented, which can provide multiple AC/DC interfaces and diverse operation modes with various control functionalities. Secondly, the SIU-based hybrid microgrid architecture and its hierarchical control structure are established. The dedicated interfaces and cluster controllers for electric vehicles (EVs) facilitate the implementation of centralized vehicle-to-grid (V2G) service. Thirdly, a hierarchical control strategy of SIU, which involves local control in primary control level and power flow control in secondary control level, is introduced to realize coordinated operation of microgrid. The model of the proposed hybrid microgrid architecture is built, and the simulation results demonstrate that the microgrid architecture and hierarchical control strategy can achieve a reliable and coordinated system operation under various kinds of scenarios. Additionally, the mutual power support between AC and DC sub-grids is realized with increased utilization and local consumption of renewable energy resources (RESs).

Keywords: Hybrid AC/DC microgrid architecture; Smart interlinking unit (SIU); Hierarchical control structure; Local control; Power flow control (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920301227
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301227

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114610

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301227