A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants
José I. Linares,
María J. Montes,
Alexis Cantizano and
Consuelo Sánchez
Applied Energy, 2020, vol. 263, issue C, No S0306261920301562
Abstract:
Power tower concentrating solar plants with thermal energy storage will play a key role in the transition to a low carbon scenario, thanks to be a dispatchable renewable energy system. The ternary MgCl2/KCl/NaCl salt appears as one of the most promising due to its lower melting point, higher heat capacity, lower cost and stability up to 800 °C. A cavity-type receiver has been selected because minimizes radiation heat loss at high working temperatures, compared to an external-type receiver, since all commercial selective coatings degrade in air. Supercritical Brayton power cycle is chosen for the power block because it can surpass 50% efficiency, even when working in dry cooling conditions, and printed circuit heat exchangers are usually recommended due to its ability to support the high pressures. However, plugging/clogging issues arise in their small channels when using molten salts. This paper proposes a novel supercritical CO2 Bayton power cycle whose heat power is supplied through the low pressure side (over 85 bar) allowing the use of shell and tube heat exchangers, achieving a higher compactness and a lower investment. Thus, different options based on the recompression layout with intercooling and reheating have been investigated in both dry and wet cooling scenarios. Reheating is recommended for wet cooling, reaching 54.6% efficiency and an investment of 8662 $/kWe; intercooling with reheating is the best option for dry cooling, reaching 52.6% efficiency and an investment of 8742 $/kWe.
Keywords: Supercritical CO2; Recompression Brayton power cycle; Concentrated solar plant; Shell and tube heat exchanger; Ternary chloride molten salt; Cavity receiver (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920301562
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301562
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114644
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().