Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets
Qisheng Huang,
Yunjian Xu and
Costas Courcoubetis
Applied Energy, 2020, vol. 264, issue C, No S0306261920301811
Abstract:
We investigate the interaction between the regulated and merchant storage investment made by the social planner and a merchant, through a Stackelberg competition model. In the upper level, the merchant storage owner maximizes its profit through storage investment decisions. Given the merchant storage investment, the social planner makes its own regulated storage investment, overall storage operation, and economic dispatch decisions to minimize the overall system cost in the lower level problem. Both the merchant and regulated energy storage is remunerated based on the inter-temporal difference in locational marginal prices (solved by the lower level problem). We show that the regulated storage profit (of the social planner) is always nonnegative if the storage investment cost is convex in the installed storage capacity with no fixed cost. In particular, the regulated storage profit must be zero (non-positive) if the storage investment cost is linear (affine, respectively) in the installed storage capacity. Numerical results (on the IEEE 57-bus test system) with real-world load data from the California Independent System Operator (CAISO) show that Stackelberg competition between merchant and regulated storage investment can reduce 2–3% of social cost compared to a market without storage. We also show that the merchant (profit-maximizing) investment can significantly reduce the social planner’s expense in storage investment, at the cost of only 0.5% increase in social cost (compared to the socially optimal investment). These results suggest that the government shall encourage merchant companies to invest on energy storage and to participate in wholesale electricity markets.
Keywords: Energy storage; Renewable generation; Stackelberg competition; Wholesale electricity markets (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920301811
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301811
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114669
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().