Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide
Dongin Kim and
Jeehoon Han
Applied Energy, 2020, vol. 264, issue C, No S0306261920302233
Abstract:
Carbon utilization (CU) based formic acid (FA) process is a promising option to reduce carbon dioxide (CO2) causing global warming but energy intensive resulting in a negative income effect on energy consumption. In the literature, catalytic conversion of CO2 to FA at low concentrations is focused and limited to recovery of FA with a high purity. This study presents two commercial-scale processes for catalytic production of formic acid (FA) from CO2, and conducts economic, energy and environmental analysis of them. Process B that uses an Au/TiO2 catalyst has a higher conversion by 3 mol% to 84 mol% than Process A that uses a Ru-Ph catalyst. Moreover, after catalytic conversion of CO2, Process B uses an additional amine shift reaction to recover FA with low energy consumption. Simulation of process design including CO2 conversion and separation of FA shows that Process B has a higher energy efficiency by 24.3% to 69.0% compared to Process A. However, Process A has a much lower reaction time (TR) than Process B, so the minimum selling price of FA (US$ 1,029/tFA) for Process A is more cost-competitive than Process B (US$ 1,037/tFA) with the current petroleum-based approach. In contrast, environmental analyses show that Process B has a higher potential by 0.3 tCO2/tFA to reduce CO2 emissions. If feasible positive assumptions (reduced TR; received carbon credits) can be met, Process B will also be techno-economically viable.
Keywords: Carbon utilization process; Energy analysis; Economic analysis; Environmental analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920302233
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302233
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114711
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().