EconPapers    
Economics at your fingertips  
 

Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash

Wen-Jie Cong, Yi-Tong Wang, Hu Li, Zhen Fang, Jie Sun, Hai-Tong Liu, Jie-Teng Liu, Song Tang and Lujiang Xu

Applied Energy, 2020, vol. 264, issue C, No S0306261920302476

Abstract: Biodiesel was directly one-step produced from waste oils without pretreatment catalyzed by a solid base alkalized from spent bleaching clay (SBC) ash. Optimized conditions were obtained with 99.1% biodiesel yield from soybean oil with an orthogonal design. The base catalyst was stable within 8 cycles (>95% biodiesel yield) and resistant to saponification (AV = 9.7 mg KOH/g, 96.5% biodiesel yield). The base was characterized with XRD, EDX-mapping, FT-IR, XRF and TPD, and it had similar strong basicity to Na2SiO3 (0.21 vs. 0.22 mmol/g for Na2SiO3) with active sites of Na2O and CH3ONa evolved from Na2SiO3 and NaAlSiO4 by reactions of NaOH with oxides (e.g., SiO2, Al2O3) in SBC ash. Furthermore, the base was magnetized with magnetism of 6.86 emu/g by carbonizing residual oil in SBC as carbon support and reductant (of Fe2O3 to magnetic Fe3O4 particles). It catalyzed soybean oil to produce biodiesel with 99.2% yield and blended oil (AV = 5.9) to biodiesel with 91.9% yield without any saponification. The catalyst was magnetically separated and reused for 3 cycles with 87% yield. The non-magnetic base could also efficiently catalyze actual SBC oil for the production of biodiesel with 95% yield at AV of 10. This work realized the full use of inorganics in SBC, and its oil for direct biodiesel production at a low temperature (i.e., 65 vs. 120 °C with sulfuric acid process) without wastes produced and results can easily find practical applications for waste oils.

Keywords: Biodiesel; Solid base catalyst; Spent bleaching clay; Waste oils; Transesterification (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920302476
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302476

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114735

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302476