EconPapers    
Economics at your fingertips  
 

Probabilistic solar power forecasting based on weather scenario generation

Mucun Sun, Cong Feng and Jie Zhang

Applied Energy, 2020, vol. 266, issue C, No S0306261920303354

Abstract: Probabilistic solar power forecasting plays an important role in solar power grid integration and power system operations. One of the most popular probabilistic solar forecasting methods is to feed simulated explanatory weather scenarios into a deterministic forecasting model. However, the correlation among different explanatory weather variables are seldom considered during the scenario generation process. This paper presents an improved probabilistic solar power forecasting framework based on correlated weather scenario generation. Copula is used to model a multivariate joint distribution between predicted weather variables and observed weather variables. Massive weather scenarios are obtained by deriving a conditional probability density function given a current weather prediction by using the Bayesian theory. The generated weather scenarios are used as input variables to a machine learning-based multi-model solar power forecasting model, where probabilistic solar power forecasts are obtained. The effectiveness of the proposed probabilistic solar power forecasting framework is validated by using seven solar farms from the 2000-bus synthetic grid system in Texas. Numerical results of case studies at the seven sites show that the developed probabilistic solar power forecasting methodology has improved the pinball loss metric score by up to 140% compared to benchmark models.

Keywords: Probabilistic solar power forecasting; Weather scenario generation; Gibbs sampling; Gaussian mixture model; Copula (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920303354
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303354

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114823

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303354