The effect of energy intensification on the formation of severe knock in internal combustion engines
Han Xu,
Chunsheng Weng,
Jian Gao and
Chunde Yao
Applied Energy, 2020, vol. 266, issue C, No S0306261920303664
Abstract:
With the demand of high efficiency, IC (internal combustion) engines have been pushed to their thermodynamic limits. As a result, severe knock occurs which would make a huge destruction to engine parts. Detonation is found to be the essence of such severe knock. In this research, a series of numerical simulations were conducted to prove that the detonation only occurs in the small clearance chamber while hardly occurs in the large clearance chamber, which is also validated by the detonation bomb experiments. If study the pressure profiles carefully, the shock wave intensification phenomenon can always be found before the severe knock event, which is found to be a reason for the detonation formation. Such intensification phenomenon is mainly caused by three mechanisms: separately the wave-secondary flame, wave-wave and wave-boundary wall interacting mechanism. Through the analysis of the detailed chemical reaction mechanisms of H2/O2, the shock wave intensification caused by the wave-secondary flame interacting mechanism is revealed, which would occur both in the small and the large clearance chamber. Therefore, the key factors to decide whether the severe knock would occur are attributed to the wave-wave and the wave-wall interaction. According to numerical study, it’s found that the chamber shape would affect both the wave-wave and the wave-wall interaction, which would decide the shock wave energy in the edge region. Once the energy of the shock wave is intensified to a critical level, the detonation as well as the severe knock would be formed.
Keywords: Engine knock; Super knock; Knock suppression; Detonation; Shock wave intensification (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920303664
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303664
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114854
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().