Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills
Lenan Zhang,
Zhenyuan Xu,
Bikram Bhatia,
Bangjun Li,
Lin Zhao and
Evelyn N. Wang
Applied Energy, 2020, vol. 266, issue C, No S0306261920303767
Abstract:
Seawater desalination is a promising solution to global water shortage. Commercially available desalination technologies typically require large installations which can be impractical for developing regions without well-developed infrastructure. Passive solar desalination promises a viable solution, but can suffer from low efficiencies. Recent advances in the thermal design of small-scale solar desalination systems have demonstrated the potential for high-efficiency solar desalination in portable systems. In particular, the concept of a thermally-localized multistage solar still (TMSS) – which combines localized heating of a capillary flow with condensation heat recycling – has been experimentally demonstrated very recently and achieved over 100% solar-thermal cumulative efficiency. However, a fundamental understanding of the heat and mass transfer, efficiency limits and optimization strategies are missing in the literature. This work presents a modeling framework that evaluates the thermal and vapor transport in a model TMSS system with varying device configuration and predicts its solar desalination efficiency. We demonstrate that an ultrahigh solar-thermal cumulative efficiency, many times higher than that of conventional solar stills, can be achieved by optimizing the number of stages and device geometry. Specifically, our modeling shows that the efficiency of the capillary fed TMSS is limited by the dissipation of thermal energy to the environment during condensation and significant gains in efficiency can be achieved by minimizing this loss. This work provides insights into physical processes critical for thermally-localized portable solar distillation which could lead to high-performance desalination or water purification technologies.
Keywords: Solar still; Multi-stage; Heat localization; Highly efficient; Desalination; Modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920303767
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303767
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114864
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().