EconPapers    
Economics at your fingertips  
 

Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review

Yanpeng Mao, Yibo Gao, Wei Dong, Han Wu, Zhanlong Song, Xiqiang Zhao, Jing Sun and Wenlong Wang

Applied Energy, 2020, vol. 267, issue C, No S030626192030372X

Abstract: Hydrogen production via a two-step thermochemical cycle has attracted considerable research interest as it can directly utilize the heat of the high temperature reactor, which eliminates the need for power generation steps and increases energy efficiency, and is understood to be a promising method for producing hydrogen on an industrial scale. The thermochemical cycle uses a metal oxide as a catalyst and involves two steps: thermal reduction and water splitting. The cycle process only requires the input of heat and water to continuously regenerate hydrogen and oxygen, which has almost no impact on the environment and has the potential for sustainable development. Herein we reviewed the two-step thermochemical cycle with regard to reaction heat source, metal oxide characteristics, and chemical reactors. The performance of volatile and non-volatile metal oxides in the cycle reactions has been thoroughly investigated. To date, the most widely studied metal oxides are ZnO/Zn, SnO2/SnO, ceria-based oxides, and iron-based oxides. Among them, doped-ceria and iron-based oxides, which have high redox activities and cycle stabilities, are considered to be the most promising materials. The possibility of achieving large-scale industrial production and the perspective on future material development were also analyzed. It was proved that the poly-cation oxides (PCOs) studied have great potential for hydrolysis, and the use of oxygen transport membrane reactor provides a new perspective for solar hydrogen production.

Keywords: Hydrogen; Two-step water splitting; Solar energy; Metal oxide; Chemical reactor (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192030372X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:267:y:2020:i:c:s030626192030372x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114860

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:267:y:2020:i:c:s030626192030372x