EconPapers    
Economics at your fingertips  
 

A noise-tolerant model parameterization method for lithium-ion battery management system

Zhongbao Wei, Difan Zhao, Hongwen He, Wanke Cao and Guangzhong Dong

Applied Energy, 2020, vol. 268, issue C, No S030626192030444X

Abstract: A well-parameterized battery model is prerequisite of the model-based estimation and control of lithium-ion battery (LIB). However, the unexpected yet inevitable noises may markedly discount the identification of model parameters in real applications. This paper focuses on the noise-immune and unbiased model parameter identification for LIB. The signal-disturbance interface in LIB model identification is firstly analyzed by reformulating an overdetermined nonlinear system, on the premise of a cautiously-designed instrumental vector estimator. The multi-variable identification is then solved in the framework of a separable nonlinear least squares (SNLS) problem via a novel two-step method combining least squares (LS) and variable projection algorithm (VPA), to co-estimate the noise variances and unbiased model parameters. A numerical solver is further exploited for the proposed LSVPA, giving rise to a recursive and computational efficient algorithmic architecture which is favorable for online applications. The proposed method is validated with both simulations and experiments in terms of the noise tolerance and the parameterization accuracy.

Keywords: Lithium-ion battery; Battery management; Model parameter identification; Noise tolerance; Variable projection (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192030444X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:268:y:2020:i:c:s030626192030444x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114932

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:268:y:2020:i:c:s030626192030444x