Bio-oil co-processing can substantially contribute to renewable fuel production potential and meet air quality standards
Arpit H. Bhatt,
Yimin Zhang and
Garvin Heath
Applied Energy, 2020, vol. 268, issue C, No S0306261920304499
Abstract:
Co-processing raw bio-oil derived from lignocellulosic biomass in existing petroleum refineries represents a near-term greenhouse gas mitigation strategy by producing partially renewable and infrastructure-compatible hydrocarbon fuel with minimal capital requirements. One deterrent for risk-averse refinery owners is that a modification to their air permit may be required prior to any changes to refinery operations due to potential air emission changes. However, a lack of information on potential air emission changes resulting from bio-oil co-processing yields uncertainty, which could cause delay in obtaining required permit. To address this concern, we perform a quantitative evaluation of air emission changes across a range of bio-oil co-processing fractions in refineries’ fluid catalytic cracking units. We find that 92% of U.S. petroleum refineries could co-process 5% or more (up to 20%, by weight) raw bio-oil without triggering major permitting requirements. We then develop an upper bound estimate of the potential for co-processing bio-oil considering permitting and technical limits; our results suggest that U.S. refineries could co-process 573,000 barrels per day (0.79 cubic meter per second) of raw bio-oil, implying ~1.92 billion gallons gasoline equivalent of renewable fuel per year (0.23 cubic meter per second), equivalent to 1.4% of U.S. gasoline consumption or 18% of ethanol production in 2018. This first-of-its-kind analysis integrates process and environmental engineering with air permitting analysis and demonstrates the importance of coupling regulatory considerations with engineering analysis to guide informed decision-making to minimize investment risks while fully leveraging refinery infrastructure. This novel approach is also applicable to refineries in other jurisdictions.
Keywords: Bio-oil; Co-processing; Air emission regulations; Renewable hydrocarbon fuel; Fluid catalytic cracking; Petroleum refinery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920304499
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304499
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114937
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().