EconPapers    
Economics at your fingertips  
 

Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield

Qiliang Wang, Honglun Yang, Shuai Zhong, Yihang Huang, Mingke Hu, Jingyu Cao, Gang Pei and Hongxing Yang

Applied Energy, 2020, vol. 268, issue C, No S030626192030516X

Abstract: Parabolic trough collectors (PTCs) are the most mature way to harvest high-temperature heat source and widely applied in solar thermal utilizations. Parabolic trough solar receivers as the heat-collecting elements (HCEs) are the key parts of PTC, but face with a knotty problem that is exploding radiative heat loss under high operating temperature, which exerts a significantly negative role on the overall performance of the PTC system. For effectively reducing the heat loss and improving the thermal performance of solar receiver, a structurally optimized HCE with an inner radiation shield was proposed, designed, and manufactured. Furthermore, the indoor heat loss and outdoor thermal efficiency testing were carried out in the Institute of Electrical Engineering, Chinese Academy of Sciences (IEECAS) to validate comprehensive thermal performance of the proposed HCEs. The results show that the radiation shield plays an effective role in reducing the heat loss and improving the thermal efficiency. The heat loss of the proposed HCE is significantly reduced by 28.0% compared to the conventional HCE at the absorber temperature of 550 °C. And the proposed HCE possesses superior performance at high operating temperature and low solar irradiance. In the case of inlet temperature of 350 °C and solar irradiance of 600 W/m2, the thermal efficiencies of proposed HCE and conventional HCE are 49.4 and 51.8% respectively, and the thermal efficiency of the proposed HCE is effectively enhanced by 4.9%.

Keywords: Parabolic trough collector; PTC; Heat loss; Efficiency; Optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192030516X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:268:y:2020:i:c:s030626192030516x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115004

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:268:y:2020:i:c:s030626192030516x