Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing
Spyros Theocharides,
George Makrides,
Andreas Livera,
Marios Theristis,
Paris Kaimakis and
George E. Georghiou
Applied Energy, 2020, vol. 268, issue C, No S0306261920305353
Abstract:
A main challenge towards ensuring large-scale and seamless integration of photovoltaic systems is to improve the accuracy of energy yield forecasts, especially in grid areas of high photovoltaic shares. The scope of this paper is to address this issue by presenting a unified methodology for hourly-averaged day-ahead photovoltaic power forecasts with improved accuracy, based on data-driven machine learning techniques and statistical post-processing. More specifically, the proposed forecasting methodology framework comprised of a data quality stage, data-driven power output machine learning model development (artificial neural networks), weather clustering assessment (K-means clustering), post-processing output optimisation (linear regressive correction method) and the final performance accuracy evaluation. The results showed that the application of linear regression coefficients to the forecasted outputs of the developed day-ahead photovoltaic power production neural network improved the performance accuracy by further correcting solar irradiance forecasting biases. The resulting optimised model provided a mean absolute percentage error of 4.7% when applied to historical system datasets. Finally, the model was validated both, at a hot as well as a cold semi-arid climatic location, and the obtained results demonstrated close agreement by yielding forecasting accuracies of mean absolute percentage error of 4.7% and 6.3%, respectively. The validation analysis provides evidence that the proposed model exhibits high performance in both forecasting accuracy and stability.
Keywords: Artificial neural networks; Clustering; Forecasting; Machine learning; Photovoltaic; Performance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920305353
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:268:y:2020:i:c:s0306261920305353
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115023
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().