EconPapers    
Economics at your fingertips  
 

Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking

Sicheng Zhan, Zhaoru Liu, Adrian Chong and Da Yan

Applied Energy, 2020, vol. 269, issue C, No S0306261920304323

Abstract: Current building energy benchmarking systems categorize buildings into peer groups by static characteristics such as climate zones and building types, which cannot account for the huge variation in building operations. Grouping buildings with diverse operations for benchmarking could result in misleading results. The smart meters provide an opportunity to feature the dynamic characteristics of building operations, but proper data mining techniques are needed to use the data for benchmarking. Accordingly, this paper proposes a framework that makes use of the time-series energy consumption data to categorize buildings by their operations and conduct energy benchmarking within each category. The proposed framework is based on 3-step K-means clustering and consists of two main parts: (1) Operation quantification, and (2) Building categorization and benchmarking. The framework was tested on a dataset of 81 buildings in Singapore. Two baseline methods were also implemented for comparison. The results show that the proposed framework successfully categorized the buildings by their operational similarities and made a significant impact on the energy benchmarking results. Further, the superiority of operation-based energy benchmarking is manifested by investigating two typical buildings where the proposed framework disagreed with the baselines. It is necessary to integrate building operations in energy benchmarking so that the energy performance is evaluated more precisely and higher energy saving potential can be uncovered.

Keywords: Building energy benchmarking; Smart meter; Clustering; Building operation; Energy conservation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920304323
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:269:y:2020:i:c:s0306261920304323

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114920

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920304323