A method to account for transient performance requirements in the design of steam generators for concentrated solar power applications
Davide Ferruzza,
Martin Ryhl Kærn and
Fredrik Haglind
Applied Energy, 2020, vol. 269, issue C, No S0306261920304438
Abstract:
Concentrating solar power plants are strongly characterized by recurring start-up and shut-down procedures. This imposes new challenges for conventional components such as the steam generator systems, as frequent load variations might lead to high thermal stress cycles, affecting their lifetime negatively. In this context, the header and coil design is a favourable configuration to reduce stresses. This paper introduces a method to design the heat exchangers of the header and coil steam generator type accounting for the dynamic performance, thermal stress sensitivity and impact on the performance of the power plant. Optimal designs were determined by minimizing the cost and total water-side pressure drop of the steam generator and the levelized cost of electricity of the power plant. The steam generator dynamic model was successfully validated using operational data. The results suggest that a steam generator design characterized by a tube outer diameter of 30 mm, high steam generator pressure drop and low investment cost is the optimal solution for the power plant under consideration. A configuration featuring a large number of tube layers is optimal in order to reduce the pressure drop at the superheater while at the same time, guaranteeing acceptable stresses and good transient response.
Keywords: Concentrating solar power; Parabolic trough power plants; Steam generator; Start-up; Thermal stresses; Dynamic performance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920304438
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:269:y:2020:i:c:s0306261920304438
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114931
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().