Online pricing of demand response based on long short-term memory and reinforcement learning
Xiangyu Kong,
Deqian Kong,
Jingtao Yao,
Linquan Bai and
Jie Xiao
Applied Energy, 2020, vol. 271, issue C, No S0306261920304578
Abstract:
Incentive-based demand response is playing an increasingly important role in ensuring the safe operation of the power grid and reducing system costs, and advances in information and communications technology have made it possible to implement it online. However, in regions where incentive-based demand response has never been implemented, the response behavior of customers is unknown, in this case, how to quickly and accurately set the incentive price is a challenge for service providers. This paper proposes a pricing method that combines long short-term memory networks and reinforcement learning to solve the pricing problem of service providers when the customers’ response behavior is unknown. Taking the total profit of all response time slots in one day as the optimization goal, long and short-term memory networks are used to learn the relationship between customers’ response behavior and incentive price, and reinforcement learning is used to explore and determine the optimal price. The results show that the combination of these two methods can perform virtual exploration of the optimal price, which solves the disadvantage that reinforcement learning can only rely on delayed rewards to perform exploration in the real scene, thereby speeding up the process of setting the optimal price. In addition, because the influence of the incentive prices combination of different time slots on the profit of the service provider is considered, the negative effect of myopia optimization is avoided.
Keywords: Demand response; Online pricing; Reinforcement learning; Long short-term memory (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920304578
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:271:y:2020:i:c:s0306261920304578
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114945
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().