Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization
Shiyu Yang,
Man Pun Wan,
Wanyu Chen,
Bing Feng Ng and
Swapnil Dubey
Applied Energy, 2020, vol. 271, issue C, No S0306261920306590
Abstract:
A model predictive control system with adaptive machine-learning-based building models for building automation and control applications is proposed. The system features an adaptive machine-learning-based building dynamics modelling scheme that updates the building model regularly using online building operation data through a dynamic artificial neural network with a nonlinear autoregressive exogenous structure. The system also employs a multi-objective function that could optimize both energy efficiency and indoor thermal comfort, two often contradicting demands. The proposed model predictive control system is implemented to control the air-conditioning and mechanical ventilation systems in two single-zone testbeds, an office and a lecture theatre, located in Singapore for experimental evaluation of its control performance. The model predictive control system is compared against the original reactive control system (thermostat in the office and building management system in the lecture theatre) in each testbed. The model predictive control system reduces 58.5% cooling thermal energy consumption in the office and 36.7% cooling electricity consumption in the lecture theatre, as compared to their respective original control. Meanwhile, the indoor thermal comfort in both testbeds is also greatly improved by the model predictive control system. Developing a model predictive control system using machine-learning-based building dynamics models could largely cut down the model construction time to days as compared to its counterpart using physics-based models, which usually take months to construct. However, the machine-learning-based modelling approach could be challenged by lack of building operational data necessary for model training in case of model predictive control development before the building has become operational.
Keywords: Model Predictive Control (MPC); Machine-learning (ML); Artificial Neural Network (ANN); Air Conditioning and Mechanical Ventilation (ACMV); Building Automation and Control (BAC) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920306590
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:271:y:2020:i:c:s0306261920306590
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115147
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().