High capacity, low pressure hydrogen storage based on magnesium hydride and thermochemical heat storage: Experimental proof of concept
Michael Lutz,
Marc Linder and
Inga Bürger
Applied Energy, 2020, vol. 271, issue C, No S0306261920307388
Abstract:
With hydrogen becoming more and more important as energy carrier, there is a need for high capacity storage technologies preferably operating at low pressures. Chemical storage in metal hydrides is promising for that purpose, but they require thermal management for hydrogen release and storage, respectively. To overcome this challenge, it is beneficial to store the heat needed for hydrogen release during hydrogen storage in the storage system keeping the additional effort to provide that heat low. In this work, the experimental proof of concept of an adiabatic storage reactor is presented. Magnesium hydride and magnesium hydroxide have been used for hydrogen storage and thermochemical heat storage, respectively. A prototype reactor has been developed and experimentally investigated. It was found that the operating temperature of the materials can be adjusted with the gas pressure in a way to establish a temperature gradient from the MgH2 to the Mg(OH)2 and vice versa. Hydrogen storage and release is enhanced by the thermochemical heating/cooling. A pressure of 9 bar is sufficient to store hydrogen with a capacity of 20.8 gH2 L-1 based on the two materials only, without the steel vessel or insulation. In the heat storage compartment, 300 °C have been reached at 9.75 bar during heat release which is high enough to drive the MgH2 dehydrogenation.
Keywords: Hydrogen storage; Thermochemical heat storage; Magnesium hydride; Magnesium hydroxide (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920307388
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307388
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115226
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().