Optimal configuration of grid-side battery energy storage system under power marketization
Xin Jiang,
Yang Jin,
Xueyuan Zheng,
Guobao Hu and
Qingshan Zeng
Applied Energy, 2020, vol. 272, issue C, No S0306261920307546
Abstract:
From the view of power marketization, a bi-level optimal locating and sizing model for a grid-side battery energy storage system (BESS) with coordinated planning and operation is proposed in this paper. Taking the conventional unit side, wind farm side, BESS side, and grid side as independent stakeholder operators (ISOs), the benefits of BESS are divided into direct and indirect parts. The direct revenue for BESS is the arbitrage of the peak-valley electricity price and auxiliary service compensation. The indirect revenue refers to the benefits that BESS provides to other ISOs, including wind curtailed energy savings, a reduction in the operating cost of units, and a decrease in network loss. To maximize the comprehensive benefits of BESS, the outer layer is a multi-objective optimal model for BESS locating and sizing based on a cost-benefit analysis. The inner layer is an optimal scheduling model that coordinates wind power, units, and BESS. Thus, a multi-objective bi-level model for the optimal configuration of BESS is established. In addition, by considering the impact of a charge/discharge strategy on the life cycle of BESS, the interaction between BESS planning and operation is introduced into the model based on the equivalent life loss. The multi-objective particle swarm optimization (PSO) based on the information entropy method and the second-order cone relaxation method is employed to solve the optimal model. Results based on an improved IEEE 39-node system verify the feasibility and effectiveness of the proposed model.
Keywords: Battery energy storage system; Optimal -configuration; Multi-objective bi-level decision; Equivalent life loss; Power marketization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920307546
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307546
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115242
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().