EconPapers    
Economics at your fingertips  
 

Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships

Peng Wu, Julius Partridge and Richard Bucknall

Applied Energy, 2020, vol. 275, issue C, No S0306261920307704

Abstract: Hybrid fuel cell and battery propulsion systems have the potential to offer improved emission performance for coastal ships with access to H2 replenishment and battery charging infrastructures in ports. However, such systems could be constrained by high power source degradation and energy costs. Cost-effective energy management strategies are essential for such hybrid systems to mitigate the high costs. This article presents a Double Q reinforcement learning based energy management system for such systems to achieve near-optimal average voyage cost. The Double Q agent is trained using stochastic power profiles collected from continuous monitoring of a passenger ferry, using a plug-in hybrid fuel cell and battery propulsion system model. The energy management strategies generated by the agent were validated using another test dataset collected over a different period. The proposed methodology provides a novel approach to optimal use hybrid fuel cell and battery propulsion systems for ships. The results show that without prior knowledge of future power demands, the strategies can achieve near-optimal cost performance (96.9%) compared to those derived from using dynamic programming with the equivalent state space resolution.

Keywords: Coastal ferry; Hybrid fuel cell and battery; Continuous monitoring; Energy management system; Reinforcement learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920307704
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:275:y:2020:i:c:s0306261920307704

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115258

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920307704