EconPapers    
Economics at your fingertips  
 

Reversible solid-oxide cell stack based power-to-x-to-power systems: Comparison of thermodynamic performance

Ligang Wang, Yumeng Zhang, Mar Pérez-Fortes, Philippe Aubin, Tzu-En Lin, Yongping Yang, François Maréchal and Jan Van herle

Applied Energy, 2020, vol. 275, issue C, No S0306261920308424

Abstract: The increasing penetration of variable renewable energies poses new challenges for grid management. The economic feasibility of grid-balancing plants may be limited by low annual operating hours if they work either only for power generation or only for power storage. This issue might be addressed by a dual-function power plant with power-to-x capability, which can produce electricity or store excess renewable electricity into chemicals at different periods. Such a plant can be uniquely enabled by a solid-oxide cell stack, which can switch between fuel cell and electrolysis with the same stack. This paper investigates the optimal conceptual design of this type of plant, represented by power-to-x-to-power process chains with x being hydrogen, syngas, methane, methanol and ammonia, concerning the efficiency (on a lower heating value) and power densities. The results show that an increase in current density leads to an increased oxygen flow rate and a decreased reactant utilization at the stack level for its thermal management, and an increased power density and a decreased efficiency at the system level. The power-generation efficiency is ranked as methane (65.9%), methanol (60.2%), ammonia (58.2%), hydrogen (58.3%), syngas (53.3%) at 0.4 A/cm2, due to the benefit of heat-to-chemical-energy conversion by chemical reformulating and the deterioration of electrochemical performance by the dilution of hydrogen. The power-storage efficiency is ranked as syngas (80%), hydrogen (74%), methane (72%), methanol (68%), ammonia (66%) at 0.7 A/cm2, mainly due to the benefit of co-electrolysis and the chemical energy loss occurring in the chemical synthesis reactions. The lost chemical energy improves plant-wise heat integration and compensates for its adverse effect on power-storage efficiency. Combining these efficiency numbers of the two modes results in a rank of round-trip efficiency: methane (47.5%) > syngas (43.3%) ≈ hydrogen (42.6%) > methanol (40.7%) > ammonia (38.6%). The pool of plant designs obtained lays the basis for the optimal deployment of this balancing technology for specific applications.

Keywords: Electrical storage; Power-to-x; Reversible solid-oxide cell; Ammonia; Methanol; Sector coupling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920308424
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308424

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115330

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308424