Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources
Julian D. Osorio,
Mayank Panwar,
Alejandro Rivera-Alvarez,
Chrys Chryssostomidis,
Rob Hovsapian,
Manish Mohanpurkar,
Sayonsom Chanda and
Herbert Williams
Applied Energy, 2020, vol. 275, issue C, No S0306261920308631
Abstract:
A novel approach using decoupled processes to harness offshore renewable energy, from marine hydrokinetics, ocean waves, wind, and solar to produce liquid air, is presented in this paper. Offshore renewables interconnection using submarine medium- and high-voltage direct current technologies are used to produce liquid air that can be transported to end-use locations using repurposed liquefied natural gas tankers. Two important possibilities arise from using the proposed technology. The first possibility allows the integration with conventional thermal cycles to improve efficiency. This approach can be used to leverage efficiencies of thermal systems that have already reached a plateau in the maximum achievable efficiency via design and operation optimization. The second possibility is related to the incorporation of low temperature cycles to recover waste heat from other thermal processes. This is important considering that waste heat accounts for more than 60% of the consumed energy in the United States. A detailed technical description of the complete cycle from cryogen generation to end-use of energy is provided. Estimation of efficiency enhancement for thermal plants using liquid air including waste heat recovery is presented.
Keywords: Liquid air; Energy storage; Offshore renewable energy sources; Thermal efficiency improvement; Waste heat recovery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920308631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308631
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115351
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().