Forecasting urban residential stock turnover dynamics using system dynamics and Bayesian model averaging
Wei Zhou,
Eoghan O'Neill,
Alice Moncaster,
David Reiner and
Peter Guthrie
Applied Energy, 2020, vol. 275, issue C, No S0306261920309004
Abstract:
Knowing the size of building stock is perhaps the most basic determinant in assessing energy use in buildings. However, official statistics on urban residential stock for many countries are piecemeal at best. Previous studies estimating stock size and energy use make various debateable methodological assumptions and only produce deterministic results. This paper presents a Bayesian approach to characterise stock turnover dynamics and estimate stock size uncertainties, applied here to China. Firstly, a probabilistic dynamic building stock turnover model is developed to describe the building aging and demolition process, governed by a hazard function specified by a parametric survival model. Secondly, using five candidate parametric survival models, the building stock turnover model is simulated through Markov Chain Monte Carlo to obtain posterior distributions of model-specific parameters, estimate marginal likelihood, and make predictions of stock size. Thirdly, Bayesian Model Averaging is applied to create a model ensemble that combines model-specific posterior predictive distributions of the recent historical stock evolution pathway in proportion to posterior model probabilities. Finally, the Bayesian Model Averaging model ensemble is extended to forecast future trajectories of residential stock development through 2100. The modelling results suggest that the total stock in China will peak around 2065, at between 42.4 and 50.1 billion m2. This Bayesian modelling framework produces probability distributions of annual total stock, age-specific substocks, annual new buildings and annual demolition rates. This can support future analysis of policy trade-offs across embodied-versus-operational energy consumption, in the context of sector-wide decarbonisation.
Keywords: Building stock; Lifetime distribution; System dynamics; Bayesian model averaging; Markov Chain Monte Carlo; Embodied energy; Operational energy; China (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920309004
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Forecasting Urban Residential Stock Turnover Dynamics using System Dynamics and Bayesian Model Averaging (2020) 
Working Paper: Forecasting Urban Residential Stock Turnover Dynamics using System Dynamics and Bayesian Model Averaging (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:275:y:2020:i:c:s0306261920309004
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115388
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().