An improved min-max power dispatching method for integration of variable renewable energy
Wei Wang,
Bo Sun,
Hailong Li,
Qie Sun and
Ronald Wennersten
Applied Energy, 2020, vol. 276, issue C, No S0306261920309429
Abstract:
High uncertainty and large fluctuation of variable renewable energy create enormous challenges to planning and operation of integrated energy systems. To overcome these problems, this paper proposed an improved min-max dispatching method. In the meantime, a control algorithm for short-term power dispatching was proposed and implemented to smoothen the power dispatching between two neighboring dispatching intervals. The improved min-max dispatching method was applied to a 1 kW experimental PV system with real-time data. The optimal capacity of the battery energy storage system obtained by the improved min-max method is 40% smaller than the volume obtained by the modified min-max method. Regarding the operation of the BESS, the average depth of discharge is 0.5988, which is 7.06% higher than the operation performance with the alternative dispatching method. The results clearly indicate that improved min-max dispatching method is a very effective approach for managing grid-connected integrated energy systems and promoting penetration of variable renewable energies.
Keywords: Power dispatching; Min-max dispatching method; Battery; Energy storage; Variable renewable energy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920309429
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309429
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115430
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().