EconPapers    
Economics at your fingertips  
 

Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents

L. del Horno, E. Segura, R. Morales and J.A. Somolinos

Applied Energy, 2020, vol. 276, issue C, No S0306261920309697

Abstract: The use of ballast systems to carry out automatic emersion/immersion maneuvers for first generation tidal energy converters (TECs) has aroused the interest of researchers and technicians as new technique by which lower installation and operation and maintenance (O&M) costs (a reduction of the installation costs by 10% and O&M by 15%). Very simple dynamic models have been obtained and subsequently employed in order to propose various control schemes with which to carry out this sort of maneuvers in devices with different degrees of freedom. This paper provides a detailed study of the closed loop behavior of a gravity-based first generation TEC, which performs only vertical movements with a single degree of freedom. The dynamic behavior of the set (system + controller) is analyzed when the parameters, obtained from its nominal dynamic model and used to design the controller, cannot correspond faithfully with the real parameters of the system. The effects of large uncertainties on the rigid body and the influence on the viscous terms of the added masses of the device are analyzed. The effect of strong additive disturbances owing to external forces or non-perfect null buoyancy during the performance of emersion/immersion maneuvers is also studied. The effectiveness of the proposed control system and its excellent behavior, even under non-nominal conditions and in the presence of strong external disturbances, together with the performance of the proposed emersion/immersion strategy has been demonstrated by means of numerical simulations and experimental trials on a laboratory prototype. A very simple criterion for the design of controllers is also proposed.

Keywords: Renewable energy; Tidal energy converters; Cost reductions; Closed-loop system; Emersion/immersion maneuvers (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920309697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309697

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115457

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309697