EconPapers    
Economics at your fingertips  
 

Generation expansion planning with renewable energy credit markets: A bilevel programming approach

Hieu T. Nguyen and Frank A. Felder

Applied Energy, 2020, vol. 276, issue C, No S0306261920309843

Abstract: This paper presents a novel generation expansion planning (GEP) problem that integrates the renewable energy market to power system operations. We consider the gaining prominence for renewable energy credits (REC) used to implement renewable portfolio standards, a politically popular policy employed in many US states. The overall problem is formulated as a bilevel optimization where the offering prices, supplies, and demands in the REC markets are considered as functions of power system optimal operations. The problem is solved effectively by the proposed combination of the Karush-Kuhn-Tucker (KKT) reformulation method and the fixed point iterative algorithm. Key findings on the impacts of renewable energy policies on GEP solutions such as the merit order effect, the changes of retail electricity prices, and the RPS dilution, which are consistent with observations, are presented. Our model provides an effective framework for evaluating the long-term impacts of renewable energy policies.

Keywords: Renewable energy policies; REC market; Generation expansion planning; Bilevel optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920309843
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309843

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115472

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309843