EconPapers    
Economics at your fingertips  
 

Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion

Qian Zhang, Run Hu, Yali Chen, Xingfang Xiao, Guomeng Zhao, Hongjun Yang, Jinhua Li, Weilin Xu and Xianbao Wang

Applied Energy, 2020, vol. 276, issue C, No S0306261920310576

Abstract: As a direct approach to utilize the abundant solar energy, solar steam generation surges in recent decade to generate fresh water from sewage and seawater, while still suffering from challenges like a limited photothermal efficiency and scale manufacturing. To enhance the solar energy utilization efficiency, inspired from banyan tree, we demonstrate a new, scalable and low-cost hierarchical evaporator, comprising an activated carbon-cotton fabric as photothermal leaves, commercial polyester pillars as prop roots, and expandable polyethylene foams, to largely utilize solar energy. The both sides of fabric and lateral area of polyester pillars collectively contribute to a rather high evaporation rate 1.95 kg m−2 h−1, with enhanced solar efficiency under 1 sun illumination. Polyester pillars as water paths can reduce the contact area between the photothermal layer and bulk water to prevent heat loss. The hierarchical evaporator is able to enhance solar energy utilization by increasing the extra evaporation area including the bottom side of fabric and lateral area of polyester pillars and thus behave most similarly to the transpiration process of banyan tree from both sides of leaves and prop roots. Moreover, the proposed hierarchical evaporator is further demonstrated to possess anti-salt-clogging performance by changing the number of polyester pillars. The banyan-inspired hierarchical evaporator is scalable, feasible, and low-cost, showing great potential for direct industrial applications of solar energy on clean water generation and sewage treatment.

Keywords: Photothermal conversion; Solar steam; Hierarchical evaporators; Solar energy utilization; Salt-resistant (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310576
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:276:y:2020:i:c:s0306261920310576

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115545

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920310576