EconPapers    
Economics at your fingertips  
 

Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm

Azim Heydari, Meysam Majidi Nezhad, Elmira Pirshayan, Davide Astiaso Garcia, Farshid Keynia and Livio De Santoli

Applied Energy, 2020, vol. 277, issue C, No S0306261920310151

Abstract: Electricity price forecasting is a key aspect for market participants to maximize their economic efficiency in deregulated markets. Nevertheless, due to its non-linearity and non-stationarity, the trend of the price is usually complicated to predict. On the other hand, the accuracy of short-term electricity price and load forecasting is fundamental for an efficient management of electric systems. An accurate prediction can benefit future plans and economic operations of the power systems’ operators. In this paper, a new and accurate combined model has been proposed for short-term load forecasting and short-term price forecasting in deregulated power markets. It includes variational mode decomposition, mix data modeling, feature selection, generalized regression neural network and gravitational search algorithm. A mixed data model for the price and load forecast has been considered and integrated with the original signal series of price and load and their decomposition. Throughout this model, the candidate input variables are chosen by a distinct hybrid feature selection. Two reliable electricity markets (Pennsylvania-New Jersey-Maryland and Spanish electricity markets) have been used to test the proposed forecasting model and the obtained results have been compared with different valid benchmark prediction models. Lastly, the real load data of Favignana Island's power grid have been considered to test the proposed model. The obtained results pinpointed that the proposed model’s precision and stability is higher than in other benchmark forecasting models.

Keywords: Electricity price forecasting; Load forecasting; Generalized Regression Neural Network; Feature selection; Optimization algorithm; Power grid management (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310151
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310151

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115503

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310151