EconPapers    
Economics at your fingertips  
 

Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve

J.C. Hernández, F. Sanchez-Sutil, F.J. Muñoz-Rodríguez and C.R. Baier

Applied Energy, 2020, vol. 277, issue C, No S0306261920310412

Abstract: This study provides a methodology to assess the techno-economic performance of photovoltaic household-prosumers that jointly provide self-consumption/sufficiency enhancement (SCSE) and frequency containment reserve (FCR). It thus addresses the following issues: (i) battery aging; (ii) supercapacitors joined to batteries building hybrid storage systems; (iii) management strategies of SCSE and charge level in energy storage systems; (iv) an integrated system with a 1-ms simulation step and high-resolution inputs. The methodology was applied to one Spanish household-prosumer. The study compared three charge-level management strategies by using different technical and economic performance indicators and concluded that the deadband recovery was the best. Moreover, the best techno-economic indicators were achieved by broadening the storage capacity band of unrestricted operation for SCSE (30–90%). Regarding the prosumer sizing, the optimal converter-battery configuration was determined so as to minimize the total energy supply cost. Long-term performance confirmed that when FCR provision was added to the SCSE, profitability increased up to 14.01%, with a relatively low impact on battery aging. A sensitivity analysis guaranteed a cost reduction of 3.68% for the prosumer energy and of 16% for the storage system life cycle at the optimal hybrid storage sizing. This sizing involved a 1% supercapacitor hybridization and a time constant of 150 s for power splitting.

Keywords: Frequency containment reserve; Photovoltaic self-consumption/sufficiency; Hybrid energy storage system; Techno-economic model; Battery lifetime; Management strategy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310412
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310412

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115529

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310412