EconPapers    
Economics at your fingertips  
 

Predicting pH rise as a control measure for integration of CO2 biomethanisation with anaerobic digestion

Bing Tao, Yue Zhang, Sonia Heaven and Charles J. Banks

Applied Energy, 2020, vol. 277, issue C, No S0306261920310473

Abstract: In-situ CO2 biomethanisation offers a means to combine biogas upgrading with increased methane productivity, but its potential contribution to power-to-gas is often ignored due to concerns over process stability and control. The research presents an equation derived from fundamental chemical equilibria which predicts the relationship between partial CO2 pressure and digester pH, and allows estimation of the maximum achievable biogas methane content compatible with stable operation. A rapid experimental determination was also developed to support these predictions. The results were validated by long-term experiments using synthetic feedstock with different ammonia concentrations (2 and 3 g N L-1). Further trials carried out using food waste and sewage sludge as substrates showed stable operation at biogas methane contents of 92 and 90% CH4 and pH 8.5 and 7.9, respectively. CO2 biomethanisation was successfully demonstrated in a food waste digester with a total ammoniacal nitrogen of 4.8 g N L-1 with volumetric methane production enhanced by more than 2 times, from 2.29 to 5.01 L CH4 per L digester per day. The predictive approach used is applicable to digesters fed on different feedstocks and to hybrid systems with biomethanisation of both endogenous and exogenous CO2; and offers a basis for both process design guidelines and operational control. The output from the work thus provides engineers, operators and plant designers with a valuable tool for the successful implementation of in-situ biomethanisation in anaerobic digesters.

Keywords: CO2 biomethanisation; pH rise; Anaerobic digestion; Food waste; Renewable energy; Hydrogenotrophic methanogens (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310473
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310473

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115535

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310473