A novel dynamic wind farm wake model based on deep learning
Jincheng Zhang and
Xiaowei Zhao
Applied Energy, 2020, vol. 277, issue C, No S0306261920310643
Abstract:
A deep learning based reduced order modelling method for general unsteady fluid systems is proposed, which is then applied to develop a novel dynamic wind farm wake model. The proposed method employs the proper orthogonal decomposition technique for reducing the flow field dimension and the long short-term memory network for predicting the reduced representation of the flow field at a future time step. The method is specifically designed to tackle distributed fluid systems (such as wind farm wakes) and to be control-oriented. For wind farm wake modelling, a set of large eddy simulations are first carried out to generate a series of flow field data for wind turbines operating in different conditions. Then the proposed method is employed to develop the data-based wake model. The results show that this novel dynamic wind farm wake model can predict the main features of unsteady wind turbine wakes similarly as high-fidelity wake models while running as fast as the low-fidelity static wake models and that the model’s overall prediction error is just 4.8% with respect to the freestream wind speed. As an illustrative example, the developed model can predict the unsteady turbine wakes of a 9-turbine test wind farm within several seconds based on a standard desktop while it requires tens of thousands of CPU hours on a high-performance computing cluster if a high-fidelity model is used. Thus the developed model can be used for fast yet accurate simulation of wind farms as well as for their predictions and control designs.
Keywords: CFD simulation; Deep learning; Dynamic wake model; Reduced order modelling; Wind farm control (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920310643
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310643
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.115552
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().