EconPapers    
Economics at your fingertips  
 

Wave energy converter physical model design and testing: The case of floating oscillating-water-columns

J.C.C. Portillo, K.M. Collins, R.P.F. Gomes, J.C.C. Henriques, L.M.C. Gato, B.D. Howey, M.R. Hann, D.M. Greaves and A.F.O. Falcão

Applied Energy, 2020, vol. 278, issue C, No S0306261920311375

Abstract: The quest for exploiting the ocean resources and understanding its behaviour has been a challenge with increasing needs for innovation and technology. Model testing is an essential step in offshore renewable energy technology development. It involves challenges that require experience and guidance. Costly mistakes might arise with the subsequent waste of time and resources. This paper presents the model design and testing processes as part of wave energy projects and the results of experimental testing of two types of oscillating-water-column (OWC) wave energy converters (WEC). The model design aims at the creation of a reduced-scale model to simulate the physical phenomena found in full-scale devices. It is a process that requires several skills and an adequate compromise among all variables. This design involves several approaches as different physical phenomena do not follow the same similarity conditions, requiring adjustments in scale, materials, and other relevant properties. Besides, the model testing process comprises the necessary planning and actions to execute the tests and post-processing of data. This process is addressed here through model design and testing of two WECs: the coaxial-duct and the spar-buoy OWCs. The configurations have been designed and studied for large-scale energy production and small-scale power in oceanographic applications. Although the devices are both OWCs, the designs exhibit significant differences. The development process of the models and results are presented for the two OWC devices. Free-decay tests, hydrodynamic performance and mooring tension results are presented and discussed. These may serve as guidelines and numerical modelling validation.

Keywords: Wave energy; Floating oscillating-water-column; Coaxial-duct OWC; Spar-buoy OWC; Physical model design; Experimental wave tank testing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920311375
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311375

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.115638

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311375